Actively passive: The role of textbook figures in developing visual thinking skills

Erika Offerdahl

Department of Chemistry & Biochemistry

Visual Representation: The Heart and

Tayares et al. 2011.

http://science.howstuffworks.com

US Global Change Research Program

Campbell, Biology 8th Edition

What is visual thinking?

Interpret, create, and use representations

Ainsworth 2006, Rundgren & Tibell 2010, Schönborn & Anderson 2010

How are visual thinking skills developed?

- Visual thinking is, at best, an implicit goal of undergraduate curricula.
- As such, visual thinking is constrained by the visualizations to which students are exposed.

Research Questions

To what degree do textbook visualizations provide a scaffold for the development of visual thinking?

- What is the nature of textbook visualizations across the undergraduate curriculum?
- How do textbook visualizations compare to expert visualizations?

Graph

Symbolic

Schematic

Realistic

Cartoon

Мар

N = 938

N=2332

Duncan et al., 2011; Rybarczyk 2011

Visualizations in Introductory Biology Sequence

Disconnect Between Semesters in Introductory Biology Sequence

Evolution: The Unifying Theme?

A transect across a curriculum

Summary

- Lack of scaffolding across the undergraduate curriculum to support development of visual thinking
 .
- There is a disconnect between what students are routinely exposed to and what scientists use.
- Paucity of graphs may reinforce perceptions of life science as non-quantitative.
- Photographs and other real images are decorative or explanatory rather than representing data.
- Schematics seldom used to model or hypothesize.

Implications and Future Work

- Learning environments should be augmented to better scaffold the development of visual thinking – including how we assess our students.
- Students need more opportunities to see and interpret authentic visualizations as well as practice representing data visually.
 - Model-based instruction
 - Authentic laboratory experiences
 - Portfolios of student learning

Acknowledgements

CiDER (Collaboration in Discipline Based Education Research) and Biochemistry Education Research Group @ NDSU:

Dr. Jenni Momsen
Jessie Arneson
Mary Derting (REU)
Alisa Fairweather (undergrad)
Jordyn Hull (REU)
Amanda Kliora (REU)
Megan Meyer (undergrad)
Jan Ohm (high school student)
Amy Williams (undergrad)

NSF-CHE #1062701 NSF-DUE #1156974 NSF EPSCoR EPS-0814442

Differences due to disciplinary practices?

